
The Ising Model

Jianan Zhang

July 6, 2025

1 Finite-volume Gibbs distributions
In this section, the Ising model on Zd is defined precisely and some of its basic properties are
established.

Definition 1.0 Gibbs distribution in finite-volume

For Ising model in a finite volume Λ ⊂ Zd, the configurations of the Ising model are the
elements of the set ΩΛ = {−1, 1}Λ, with the random variable spin σi(ω) = ωi.
we can define the Gibbs distribution in steps:
For the given edge set EΛ, we associate each configuration ω ∈ ΩΛ with its energy, given by
the Hamiltonian

HΛ;β,h(ω) = −β
∑

{i,j}∈EΛ

σi(ω)σj(ω)− h
∑
i∈Λ

σi(ω),

where β ∈ R≥0 is the inverse temperature and h ∈ R is the magnetic field. Then the Gibbs
distribution is defined by

µΛ;β,h(ω) =
1

ZΛ;β,h
exp(−HΛ;β,h(ω)),

where the partition function is given by

ZΛ;β,h =
∑
ω∈ΩΛ

exp(−HΛ;β,h(ω)).

In this Chapter, the edge set is usually given by the nearest-neighbor pairs of vertices.

Example 1.0

With the definition above we introduce several important concepts in the Ising model:
• Free boundary condition: EΛ = {{i, j} ∈ Zd × Zd : |i − j| = 1, i, j ∈ Λ}. Denoted as
µΛ;β,∅

• Periodic boundary condition: Λn = {0, . . . , n − 1}d,EΛn = {{i, j} : i −
j has only one nonzero component and the latter is equal to ± 1modn} (Ising model
on the torus Tn). Denoted as µper

Λn;β,h

• Boundary condition: Fixing a finite set Λ ⊂ Zd and a configuration η ∈ Ω, we define a
configuration of the Ising model in Λ with boundary condition η as an element of the
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finite set
ΩηΛ = {ω ∈ Ω : ωi = ηi, ∀i /∈ Λ}.

with the edge set
E b
Λ = {{i, j} ⊂ Zd : {i, j} ∩ Λ 6=, i ∼ j}.

Denoted as µηΛ;β,h

• For special case of η ≡ 1 (all spins up), we denote the Gibbs distribution as µ+Λ;β,h. For
η ≡ −1 (all spins down), we denote it as µ−Λ;β,h.

Remark 1.1. We will often use 〈·〉#Λ;β,h and µ#Λ;β,h interchangeably.

2 Thermodynamic limit, pressure and magnetization

2.1 Convergence of subsets

To define the Ising model on the whole lattice Zd, we have to consider sequences of finite subsets
Λn ⊂ Zd which converge to Zd, denoted by Λn ↑ Zd:

• Λn ⊂ Λn+1 for all n ∈ N.

•
∪∞
n=1 Λn = Zd.

Furthermore, in order to control the influence of the boundary condition, we have to impose a
further regularity. We’ll say that a sequence Λn converges to Zd in the sense of van Hove,
which is denoted as Λn ⇑ Zd iff

lim
n→∞

|∂inΛn|
|Λn|

= 0, (1)

where ∂inΛ = {i ∈ Λ : ∃j /∈ Λ, j ∼ i}.

2.2 Pressure

Definition 2.0 Pressure

The pressre in Λ is defined by

ψ#
Λ (β, h) =

1

|Λ|
logZ#

Λ;β,h.

Remark 2.1. We can observe that it is an even function of h.

Lemma 2.1

For each type of boundary condition #, (β, h) → ψ#
Λ (β, h) is convex.
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Proof

By Holder’s inequality,

ZΛ;αβ1+(1−α)β2,αh1+(1−α)h2 =
∑
ω

e−αHΛ;β1,h1
(ω)−(1−α)HΛ;β2,h2

(ω)

≤ (
∑
ω

e−HΛ;β1,h1(ω))α(
∑
ω

e−HΛ;β2,h2
(ω))1−α.

Thus it is convex by taking logarithm and dividing by |Λ|.

Theorem 2.1

In the thermodynamic limit, the pressure

ψ(β, h) = lim
Λ⇑Zd

ψ#
Λ (β, h)

is well-defined and independent of the sequence and of the type of boundary condition.

Proof

We start by proving convergence in the case of free boundary condition.
Step 1: We first show the existence of the limit lim

n→∞
ψ∅
Dn

(β, h), where Dn = {1, 2, . . . 2n}d.
The pressure of Dn+1 will be shown to be close to the pressure of Dn. Indeed, we can
decompose Dn+1 into 2d disjoint translates of Dn, denoted by D(1)

n , . . . , D
(2d)
n .

Thus the energy of ω in Dn+1 can be written as

HDn+1 =
2d∑
i=1

H
D

(i)
n

+Rn,

where Rn represents the energy of interaction between pairs of spins that belong to different
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sub-boxes. Since
∑

ω

2d∏
i=1

exp
(
−H

D
(i)
n (ω)

)
= (ZDn)

2d , we have that

e− supRn(ZDn)
2d ≤ ZDn+1 ≤ e− inf Rn(ZDn)

2d ,

i.e. |ψDn+1−ψDn | ≤
sup |Rn|
2d(n+1) . Since |Rn| ≤ β ·d·(2(n+1)(d−1)), we have |ψDn+1−ψDn | ≤ Ce−cn,

which implies that it is a Cauchy sequence.
Step 2: We now consider an arbitrary sequence Λn ⇑ Zd. We fix some integer k and consider
a partition of Zd into adjacent disjoint translates of Dk. For each n, consider a minimal
covering of Λn by elements D(j)

k of the partition, and let [Λn] =
∪
j D

(j)
k .

We use the estimate

|ψΛn − ψ| ≤ |ψΛn − ψ[Λn]|+ |ψ[Λn] − ψDk
|+ |ψDk

| (2)

With step 1, we have that ∃k0 big enough such that for all k ≥ k0, |ψDk
− ψ| < ϵ.

For ψ[Λn], we have H[Λn] =
∑

j H
D

(j)
k

+Wn, where |Wn| ≤ β |[Λn]|
Dk

d(2k)d−1 = βd2−k|[Λn]|
(counting the number of sub-boxes). Thus ∃k1 big enough such that for all k ≥ k1, |ψ[Λn] −
ψDk

| < ϵ.
Then we fix k ≥ max{k0, k1} and write ∆n = [Λn] \ Λn. We have

|HΛn − H[Λn]| ≤ (2dβ + |h|)|∆n|.

hence
e−(2dβ+|h|+log2)|∆n|ZΛn ≤ Z[Λn] ≤ e(2dβ+|h|+log2)|∆n|ZΛn

i.e.
| logZΛn − logZ[Λn]| ≤ |∂Λn||Dk|(2dβ + |h|+ log2)

Since |[Λn]|
|Λn| ∈ [1, 1 + |∂inΛn||Dk|

|Λn| ] and ψΛ is uniformly bounded by 2dβ + |h| + log 2, we can
find n large enough such that |ψΛn − ψ| < ε from the regularity (1).
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Combining all these estimates, we conclude from (2) that |ψ∅
Λn

− ψ| ≤ ε.
The independence of boundary condition can get in the similar estimation from the regularity.

2.3 Magnetization

Definition 2.1 magnetization density

We define the magnetization density as

mΛ =
1

|Λ|
MΛ,

where MΛ =
∑

i∈Λ σi is the total magnetization in Λ.

Remark 2.2. As can be easily checked,

m#
Λ (β, h) =

∂ψ#
Λ

∂h
(β, h).

Learned in Probability Theory-Outer Chapter, we have also learned that

log
⟨
etMΛ

⟩#
Λ;β,h

= |Λ|(ψ#
Λ (β, h+ t)− ψ#

Λ (β, h)). (3)

It will turn out to be important to determine whether the equation above still holds in the
thermodynamic limit. We need to check whether the limit exists and depends on the boundary
condition, and if we can interchange the limit and the derivative.

Since ψ#
Λ (β, h) is convex, we can use the following lemma.

Lemma 2.2 Properties of convex functions

(1) ∂+f(x), ∂−f(x) exist at all points x ∈ I.

(2) ∂−f(x) ≤ ∂+f(x) for all x ∈ I.

(3) ∂+f(x) ≤ ∂−f(y) for all x < y ∈ I.

(4) ∂+f, ∂−f are nondecreasing.

(5) ∂+f is right-continuous, ∂−f is left-continuous.

(6) {x : ∂+f(x) 6= ∂−f(x)} is at most countable.

(7) Let (gn) be a sequence of convex functions from I to R converging pointwise to a
function g. If g is differentiable at x, then lim

n→∞
∂+gn(x) = lim

n→∞
∂−gn(x) = g′(x).

With the lemma above, we immediately reach that

Theorem 2.2

Define Bβ = {h ∈ R : ∂ψ
∂h− (β, h) 6=

∂ψ
∂h+

(β, h)}.
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Then for all h /∈ Bβ, the average magnetization density

m(β, h) = lim
Λ⇑Zd

m#
Λ (β, h)

is well defined, independent of the sequence Λ ⇑ Zd and of the boundary condition and
satisfies

m(β, h) =
∂ψ

∂h
(β, h). (4)

Moreover, the function h→ m(β, h) is non-decreasing and is continuous at every h /∈ bβ . It
is however discontinuous at each h ∈ bβ.
In particular, the spontaneous magnetization

m∗(β) = lim
h↓0

m(β, h)

is always well-defined.

The above discussion shows that the average magnetization density is discontinuous precisely
when the pressure is not differentiable in h. This leads to the following

Definition 2.2

The pressure psi exhibits a first-order phase transition at (β, h) if h 7→ ψ(β, h) fails to
be differentiable at that point.

3 The one-dimensional Ising model
Since the major part of this section has been discussed in Probability Theory-Outer Chapter, I’ll
only introduce them briefly.

Theorem 3.0

(d = 1) For all β ≥ 0 and all h ∈ R, the pressure ψ(β, h) of the one-dimensional Ising model
is given by

ψ(β, h) = log

{
eβ cosh(h) +

√
e2β cosh2(h)− 2 sinh(2β)

}
. (5)

Remark 3.1. With the theorem above, we can check that

• m∗(beta) = 0, ∀β > 0.

• lim
h→±∞

m(β, h) = ±1, ∀β ≥ 0.

• lim
β→∞

m(β, h) =


+1, h > 0

0, h = 0

−1, h < 0

.
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Theorem 3.1 Exponential decay

(d = 1) Let 0 < β < ∞ and consider any sequence Λn ⇑ Z, with an arbitrary boundary
condition #. For all ε > 0, there exists c = c(β, ε) > 0 such that, for large enough n,

µ#Λn;β,0
(mΛn /∈ (−ε, ε)) ≤ e−c|Λn|. (6)

Proof

We start by writing

µ#Λn;β,0
(mΛn /∈ (−ε, ε)) = µ#Λn;β,0

(mΛn ≥ ε) + µ#Λn;β,0
(mΛn ≤ −ε),

which can be studied in the same way.

µ#Λn;β,0
(mΛn ≥ ε) ≤ e−hε|Λn|

⟨
ehmΛn |Λn|

⟩
.

Since
⟨
ehmΛn |Λn|

⟩
= ZΛn;β,h/ZΛn;β,0, we have

lim sup
n→∞

1

|Λn|
log µΛn;β,0(mΛn ≥ ε) ≤ lim

n→∞
(ψΛn(β, h)− ψΛn(β, 0)− hε) = Iβ(h)− hε,

where Iβ(h) = ψ(β, h)−ψ(β, 0). Since h ≥ 0 was arbitrary, we can minimize over tha latter:

lim sup
n→∞

1

|Λn|
log µΛn;β,0(mΛn ≥ ε) ≤ − sup{hε− Iβ(h)}.

We suffice to show that sup{hε − I − β(h)} > 0. Since I ′β(0) = 0, I ′β(h) → 1 as h → ∞,
therefore, for each 0 < ε < 1, there exists some h∗ > 0 such that h∗ε− Iβ(h∗) > 0.

4 Infinite-volume Gibbs states
The pressure only provides information about the thermodynamical behavior of the system in
large volumes. If one is interested in the statistical properties of general observales, such as the
fluctuations of the magnetization density in a finite region or the correlations between far apart
spins, one needs to understand the behaviour of the Gibbs distribution µΛ;β,h in large volumes.

In this chapter, we will follow a hands-on approach: a state (in infinite volume) will be identified
with an assignment of an average value to each local function.

Definition 4.0

A function f : Ω → R is local if there exists ∆ ⊂ Zd such that f(ω) = f(ω′) as sonn as ω
and ω′ coincide on ∆. The smallest such set ∆ is called the support of f and is denoted by
supp(f).
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Definition 4.0

An infinite-vollume state is a mapping associating to each local function f a real number
〈f〉 and satisfying:

• Normalization: 〈1〉 = 1.

• Positivity: f ≥ 0 ⇒ 〈f〉 ≥ 0.

• Linearity: ∀λ ∈ R, 〈f + λg〉 = 〈f〉+ λ 〈g〉.

The number 〈f〉 is called the average of f in the state 〈·〉.

Since states are defined on the infinite lattice, it is natural to distinguish thos that are translation
invariant. The translation by j ∈ Zd, θj : Zd → Zd is defined by

θji = i+ j.

Definition 4.0

A state 〈·〉 is translation invariant if 〈θjf〉 = 〈f〉 for all j ∈ Zd and all local functions f .

Theorem 4.0

Let β ≥ 0 and h ∈ R. Along any sequence Λn ↑ Zd, the finite-volume Gibbs distributions
with + or − boundary condition converge to infinite-volume Gibbs states 〈·〉+β,h , 〈·〉

−
β,h.

The states do not depend on the sequence (Λn) and are both translation invariant.

The prrof will be given in 3.6 (Not included in this note).

Remark 4.1. Notice that we do not claim that the two states are distinct.

More generally, one can prove, albeit in a non-constructive way, that any sequence of finite-
volume Gibbs distributions admits converging subsequences.

Exercise 4.1

Let (ηn) be a sequence of boundary conditions and Λn ↑ Zd. Prove that there exists an
increasing sequence nk of integers and a Gibbs state 〈·〉 such that

〈·〉 = lim
k→∞

〈·〉ηnk
Λnk

;β,h

is well defined.

Proof

Take {n(0)k = k}.
We do by induction and assume m = 1 at first. Consider all local events whose support
is contained in Λm. Since the events rely on finite-many configurations, we need only to
consider the expectation of r.v.s IA, where A ⊂ Λm.
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Now since the sequence {〈IA〉Λ
n
(m−1)
k

;β,h} is bounded by 1, we are able to find a subsequence

{n(m)
k } of {n(m−1)

k } such that lim
k→∞

〈IA〉Λ
n
(m)
k

exists for all A ⊂ Λm.

We now take the subsequence {n(k)k }, it’s exactly the subsequence we want.

5 Two families of local functions
As seen in the previous exercise, we need only to test convergence on a restricted family of functions.
The following lemma provides two particularly convenient such families, which will be especially
sell suited for the use of the correlation inequalities introduced in the next section. Define, for all
A ⊂ Zd,

σA =
∏
j∈A

σj , nA =
∏
j∈A

nj ,

where nj = 1
2(1 + σj) is the occupation variable at j.

Lemma 5.0

Let f be local. There exist real coefficients f̂A and f̃A such that both of the following
representations hold:

f =
∑

A⊂supp(f)

f̂AσA, f =
∑

A⊂supp(f)

f̃AnA.

Proof

We first prove the orthogonality relation of σA.

2−|B|
∑
A⊂B

σA(ω̃)σA(ω) = I(ωi = ω̃i, ∀i ∈ B). (7)

Let us first assume that ωi = ω̃i, for all i ∈ B. In that case, σA(ω̃)σA(ω) = 1, which implies
(7); When there exists i ∈ B such that ωi 6= ω̃i, then∑

A⊂B
σA(ω̃)σA(ω) =

∑
A⊂B\{i}

(σA(ω̃)σA(ω) + σA∪{i}(ω̃)σA∪{i}(ω))

=
∑

A⊂B\{i}

(σA(ω̃)σA(ω)− σA(ω̃)σA(ω))

= 0.
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With the orthogonality lemma (7) above,

f(ω) =
∑

ω′∈Ωsupp(f)

f(ω′)I(ωi = ω′
i, ∀i ∈ supp(f))

=
∑

ω′∈Ωsupp(f)

f(ω′)2−|supp(f)|
∑

A⊂supp(f)

σA(ω
′)σA(ω)

=
∑

A⊂supp(f)

{2−|supp(f)|
∑

ω′∈Ωsupp(f)

f(ω′)σA(ω
′)}σA(ω).

This shows that the first identity holds with f̂A = 2−|supp(f)|∑
ω′∈Ωsupp(f)

f(ω′)σA(ω
′).

Since σA =
∏
i∈A(2ni − 1), the second identity follows from the first one.
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