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1 Correlation Inequalities
1.1 The GKS Inequalities
Motivation. For any point i, h ≥ 0 implies

〈σi〉+Λ;β,h ≥ 0.

Similarly, knowing that the spin at some vertex j takes the value +1 should not decrease the probablity
of observing a + spin at another vertex i. That is, we expect

µ+
Λ;β,h(σi = 1 | σj = 1) ≥ µ+

Λ;β,h(σi = 1)

which is equivalent to the positive correlation inequality:

µ+
Λ;β,h(σi = 1, σj = 1) ≥ µ+

Λ;β,h(σi = 1)µ+
Λ;β,h(σj = 1),

or, in terms of expectations(we use I{σi=1} = 1
2 (σi + 1)),

〈σiσj〉+Λ;β,h ≥ 〈σi〉+Λ;β,h〈σj〉
+
Λ;β,h.

In fact, the GKS inequalities can be extended to apply under +, free, or periodic boundary conditions,
as well as in the presence of a nonnegative external field.

Let us denote by J = (Jij){i,j}∈E b
Λ

the collection of coupling constants, and by h = (hi) the external
field vector. As a shorthand, we write J ≥ 0 to indicate that Jij ≥ 0 for all {i, j} ∈ E b

Λ, and similarly
h ≥ 0 to mean that hi ≥ 0 for all i ∈ Λ.

Given a configuration ω ∈ Ωη
Λ, we define the Hamiltonian by

HΛ;J,h(ω) := −
∑

{i,j}∈E b
Λ

Jij σi(ω)σj(ω)−
∑
i∈Λ

hi σi(ω).

We have

Theorem 1 (GKS inequalities). Let J ,h be as above and Λ ⋐ Zd. Assume that h ≥ 0. Then, for all
A,B ⊂ Λ,

〈σA〉+Λ;J,h ≥ 0, (1)
〈σAσB〉+Λ;J,h ≥ 〈σA〉+Λ;J,h〈σB〉

+
Λ;J,h. (2)

These inequalities remain valid for 〈·〉∅Λ;J,h and 〈·〉perΛ;J,h.

1.1.1 Proof of the GKS Inequalities

To treat the free, +, and periodic boundary conditions in a unified framework, we establish the inequal-
ities in a more general setting. Let Λ ⊆ Zd and let K = (KC)C⊆Λ be a family of real numbers, called
coupling constants. Consider the following probability measure on ΩΛ:

νΛ;K(ω) :=
1

ZΛ;K
exp

∑
C⊆Λ

KC ωC

 ,

1
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where ωC :=
∏

i∈C ωi, and ZΛ;K is the associated partition function. The Gibbs distributions µ+
Λ;J,h,

µ∅
Λ;J,h, and µper

Λ;J,h can all be expressed in this form with KC ≥ 0 for all C ⊆ Λ, provided h ≥ 0. For
instance, µ+

Λ;β,h = νΛ;K when

KC =


h+ β ·#{j /∈ Λ : j ∼ i} if C = {i} ⊆ Λ,

β if C = {i, j} ⊆ Λ, i ∼ j,

0 otherwise.

It is also straightforward to verify that µ∅
Λ;β,h and µper

Λ;β,h can also be written in this form for suitable
choices of the coefficients K, which can all be taken nonnegative when h ≥ 0.

Free boundary: The Hamiltonian is

H∅
Λ (ω) = −β

∑
i∼j

ωiωj − h
∑
i

ωi.

Taking

KC =


h if C = {i},
β if C = {i, j}, i ∼ j,

0 otherwise,

gives µ∅
Λ;β,h = νΛ;K with KC ≥ 0.

Periodic boundary: Same expression, but sum over torus neighbors. Define KC the same way with
i ∼per j, and again we have µper

Λ;β,h = νΛ;K with KC ≥ 0.
Now we only need to prove the following generalization of theorem 1.

Theorem 2. Let K = (KC)C⊂Λ be such that KC ≥ 0 for all C ⊂ Λ. Then for any A,B ⊂ Λ,

〈σA〉+Λ;K ≥ 0, (3)
〈σAσB〉+Λ;K ≥ 〈σA〉+Λ;K〈σB〉+Λ;K . (4)

Proof. By Taylor expansion, we have

eKCωC =
∑
nC≥0

KnC

C

nC !
ωnC

C ,

so that
ZΛ;K〈σA〉Λ;K =

∑
ω

ωA

∏
C⊂Λ

eKCωC

=
∑

(nC)C⊂Λ

∏
C⊂Λ

KnC

C

nC !

∑
ω

ωA

∏
C⊂Λ

ωnC

C .

Now observe that
ωA

∏
C⊂Λ

ωnC

C =
∏
i∈Λ

ωmi
i ,

where mi = 1{i∈A} +
∑

C∋i nC . It follows that∑
ω

∏
i∈Λ

ωmi
i =

∏
i∈Λ

∑
ωi=±1

ωmi
i ≥ 0,

which proves (3).

To prove (4), we duplicate the system and consider the product distribution

νΛ;K ⊗ νΛ;K(ω, ω′) := νΛ;K(ω)νΛ;K(ω′).

Define σi(ω, ω′) := ωi, and σ′
i(ω, ω

′) := ω′
i. Then,

〈σAσB〉Λ;K − 〈σA〉Λ;K〈σB〉Λ;K = 〈σA(σB − σ′
B)〉νΛ;K⊗νΛ;K

.
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We reduce the problem to showing the nonnegativity of

(ZΛ;K)2〈σA(σB − σ′
B)〉νΛ;K⊗νΛ;K

=
∑
ω,ω′

ωA(ωB − ω′
B)

∏
C⊆Λ

eKC(ωC+ω′
C).

Introducing the variables ω′′
i := ωiω

′
i, we get∑

ω,ω′

ωA(ωB − ω′
B)

∏
C

eKC(ωC+ω′
C) =

∑
ω,ω′′

ωAωB(1− ω′′
B)

∏
C

eKC(1+ω′′
C)ωC

=
∑
ω′′

(1− ω′′
B)

∑
ω

ωAωB

∏
C

eKC(1+ω′′
C)ωC

≥ 0.

1.2 The FKG Inequality
Motivation. The total order on the spin space {−1, 1} induces a natural partial order on the configu-
ration space Ω = {−1, 1}Zd :

ω ≤ ω′ ⇐⇒ ωi ≤ ω′
i for every i ∈ Zd.

An event E ⊂ Ω is called increasing if ω ∈ E and ω ≤ ω′ together imply ω′ ∈ E.
If E and F are two increasing events depending only on the spins inside a finite region Λ ⋐ Zd,

the ferromagnetic character of the Ising model suggests that the occurrence of F can only raise the
probability of E:

µ+
Λ;β,h(E | F ) ≥ µ+

Λ;β,h(E) .

Whenever µ+
Λ;β,h(F ) > 0, this is equivalent to the positive–correlation inequality1

µ+
Λ;β,h(E ∩ F ) ≥ µ+

Λ;β,h(E)µ+
Λ;β,h(F ). (3.23)

For a local function f : ΩΛ → R we write f(ω) ≤ f(ω′) whenever ω ≤ ω′. Such a function is said to
be nondecreasing.
Example. σi, ni, nA,

∑
i∈A ni − nA are nondecreasing.

Theorem 3 (FKG inequality). Let J = (Jij)i,j∈Zd be a family of non-negative coupling constants, and
h = (hi)i∈Zd an arbitrary external field. Fix a finite region Λ ⋐ Zd and an arbitrary boundary condition ♯.
Then, for every pair of nondecreasing local functions f, g : ΩΛ → R,⟨

fg
⟩♯
Λ;J,h

≥
⟨
f
⟩♯
Λ;J,h

⟨
g
⟩♯
Λ;J,h

. (3.24)

♦ A one-dimensional analogue. Inequality (3.24) is a lattice version of the elementary fact that if
f, g : R → R are nondecreasing and µ is any probability measure on R, then

〈fg〉µ ≥ 〈f〉µ 〈g〉µ, since 〈fg〉µ − 〈f〉µ〈g〉µ =
1

2

∫
(f(x)− f(y))(g(x)− g(y))µ(dx)µ(dy) ≥ 0.

Here f(x)− f(y) and g(x)− g(y) share the same sign by monotonicity.

1.2.1 Proof of the FKG Inequality

Still, we provide a proof for a more general version of FKG inequality.
For ω = (ωi), ω′ = (ω′

i), we define

ω ∧ ω′ := (ωi ∧ ω′
i), ω ∨ ω′ := (ωi ∨ ω′

i).

Theorem 4. Let µ =
⊗

i∈Λ µi be a product measure on ΩΛ. Let f1, f2, f3, f4 : ΩΛ → R be nonnegative
functions on ΩΛ s.t.

f1(ω)f2(ω
′) ≤ f3(ω ∧ ω′)f4(ω ∨ ω′), ∀ω, ω′ ∈ ΩA. (5)

Then

〈f1〉µ〈f2〉µ ≤ 〈f3〉µ〈f4〉µ. (6)
1Indicator functions IE , IF are special cases of the local functions used in the general statement below.
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Theorem 4 implies FKG. Assume, without loss of generality, that the (bounded) non-negative func-
tions f and g depend only on the spins inside Λ ⋐ Zd.

For i ∈ Λ and s ∈ {±1} set
µi(s) := exp

{
hs+

∑
j /∈Λ, j∼i

Jij ηj

}
.

Let

p(ω) :=
exp

(∑
i,j∈Λ, i∼j Jij ωiωj

)
Zη
Λ;J,h

, µ(ω) :=
∏
i∈Λ

µi(ωi).

Then
〈f〉ηΛ;J,h =

∑
ω∈ΩΛ

f(ω) p(ω)µ(ω) = 〈fp〉µ.

Choose f1 = pf, f2 = pg, f3 = pf g, f4 = p. To obtain the FKG inequality, it suffices to verify

p(ω) p(ω′) ≤ p(ω ∨ ω′) p(ω ∧ ω′), (7)

Because Jij ≥ 0, it is enough to check

ωiωj + ω′
iω

′
j ≤ (ωi ∨ ω′

i)(ωj ∨ ω′
j) + (ωi ∧ ω′

i)(ωj ∧ ω′
j),

which is obvious if either term on the right is 1. If ωi 6= ω′
i and ωj 6= ω′

j , we may assume ωi = 1, ω′
i = −1;

the right-hand side then equals ωiωj + ω′
iω

′
j , so the inequality still holds.

Remark 1. The argument uses only the ordering ω ≤ ω′ ⇐⇒ ωi ≤ ω′
i and not the fact that ωi ∈ {±1};

it extends to any real-valued spins.

Now we turn to prove Theorem 4.

Proof. For some fixed i ∈ Λ, ω ∈ ΩΛ can be expressed by the pair (ω̃, ωi), where ω ∈ ΩΛ\{i}. We want
to show that

f̃1(ω̃)f̃2(ω̃
′) ≤ f̃3(ω̃ ∧ ω̃′)f̃4(ω̃ ∨ ω̃′), (8)

where f̃k(ω̃, ·) := 〈fk(ω̃i, ·)〉µi
=

∑
v=±1 fk(ω̃, v)µi(v). Using the observation |Λ| times yields the result.

The left-hand side of (8) can be written⟨
f1(ω̃, u) f2(ω̃

′, ν)
⟩
µi⊗µi

= 1{u=ν}
⟨
f1(ω̃, u) f2(ω̃

′, u)
⟩
µi⊗µi

+ 1{u<ν}
⟨
f1(ω̃, u) f2(ω̃

′, ν) + f1(ω̃, ν) f2(ω̃
′, u)

⟩
µi⊗µi

.

Similarly, the right-hand side of (8) becomes⟨
f3(ω̃ ∧ ω̃′, u) f4(ω̃ ∨ ω̃′, ν)

⟩
µi⊗µi

= 1{u=ν}
⟨
f3(ω̃ ∧ ω̃′, u) f4(ω̃ ∨ ω̃′, u)

⟩
µi⊗µi

+ 1{u<ν}
⟨
f3(ω̃ ∧ ω̃′, u) f4(ω̃ ∨ ω̃′, ν) + f3(ω̃ ∧ ω̃′, ν) f4(ω̃ ∨ ω̃′, u)

⟩
µi⊗µi

.

Hence

f̃3(ω̃ ∧ ω̃′) f̃4(ω̃ ∨ ω̃′)− f̃1(ω̃) f̃2(ω̃
′) = 1{u=ν}

(
f3(ω̃ ∧ ω̃′, u) f4(ω̃ ∨ ω̃′, ν)− f1(ω̃, u) f2(ω̃

′, ν)
)⟩

µn⊗µn

+ 1{u<ν}
(
C +D −A−B

)⟩
µn⊗µn

,

(9)
where A := f1(ω̃, u)f2(ω̃

′, ν), B := f1(ω̃, ν)f2(ω̃
′, u), C := f3(ω̃ ∧ ω̃′, u)f4(ω̃ ∨ ω̃′, ν), D := f3(ω̃ ∧

ω̃′, ν)f4(ω̃ ∨ ω̃′, u).
The first term on the right of (9) is non-negative by inequality (5). To conclude we need A+B ≤ C+D.
Observe that (5) yields A ≤ C and B ≤ C, whence

AB = f1(ω̃, u) f2(ω̃
′, ν) f1(ω̃, ν) f2(ω̃

′, u) ≤ CD.

If C = 0 this forces A = B = 0 and A+B ≤ C +D is trivial. If C 6= 0 then

C +D −A−B

C
= 1 +

AB

C2
−

(
A
C + B

C

)
=

(
1− A

C

)(
1− B

C

)
≥ 0,

so A+B ≤ C +D as required.
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Bonus.(Fall 2024 Probability Mid-term) LetX1, . . . , Xn
i.i.d.∼ Ber(p) and set X = (X1, . . . , Xn) ∈ {0, 1}n.

Prove that for any increasing functions f, g : {0, 1}n → R,

Cov
(
f(X), g(X)

)
≥ 0.

Solution. Choose J = 0, Y = 2X − 1 and h = 1
2 log

p
1−p ≥ 0 .

1.3 Consequences of Correlation Inequalities
Now we can continue our discussion of Theorem 4.0 from Jianan Zhang’s note.

Theorem 5 (from Jianan Zhang’s note). Let β ≥ 0 and h ∈ R. Along any sequence Λn ↑ Zd, the finite-
volume Gibbs distributions with + or − boundary condition converge to infinite-volume Gibbs states 〈·〉+β,h
and 〈·〉−β,h. The states do not depend on the sequence (Λn) and are both translation invariant.

Before we prove it, we first need some lemmas.

Lemma 1. Let f be a nondecreasing function and Λ1 ⊂ Λ2 ⋐ Zd. Then, for any β ≥ 0 and h ∈ R,

〈f〉+Λ1;β,h
≥ 〈f〉+Λ2;β,h

.

The same statement holds for the − boundary condtion and a nonincreasing function f .

Before turning to proof, we need a spatial Markov property satisfied by µη
Λ;β,h.

Proposition 1. For all ∆ ⊂ Λ ⋐ Zd, and all configurations η ∈ Ω and ω′ ∈ Ωη
Λ,

µη
Λ;β,h(· | σi = ω′

i, ∀I ∈ Λ\∆) = µω′

∆;β,h(·). (9)

Sketch. Write the finite–volume Hamiltonian with boundary η as

H η
Λ (σ) = H ω′

∆ (σ∆) + H ω′

Λ\∆(ω
′) + C(η, ω′),

where H ω′

∆ collects all interactions touching ∆ (the spins on Λ \∆ are frozen to ω′), and the other two
terms do not depend on σ∆. Hence, conditioning on {σi = ω′

i}i∈Λ\∆ just multiplies both numerator and
denominator of the Gibbs weight by the same factor exp{−β[H ω′

Λ\∆ + C]}. The resulting conditional
distribution is therefore the usual Gibbs measure in ∆ with boundary ω′, i.e. µω′

∆;β,h.

Proof of Lemma 1. It follows from (9) that

〈f〉+Λ1;β,h
= 〈f | σi = 1, ∀i ∈ Λ2\Λ1〉+Λ2;β,h

=
〈fI{σi=1, ∀i∈Λ2\Λ1}〉

+
Λ2;β,h

〈I{σi=1, ∀i∈Λ2\Λ1}〉
+
Λ2;β,h

≥
〈f〉+Λ2;β,h

〈I{σi=1, ∀i∈Λ2\Λ1}〉
+
Λ2;β,h

〈I{σi=1, ∀i∈Λ2\Λ1}〉
+
Λ2;β,h

= 〈f〉+Λ2;β,h
.

The next lemma shows that the Gibbs distributions with + and - boundary condition play an extremal
role.

Lemma 2. Let f be an arbitrary nondecreasing function. Then, for any β ≥ 0 and h ∈ R,

〈f〉−Λ;β,h ≤ 〈f〉ηΛ;β,h ≤ 〈f〉+Λ;β,h.

Similarly, if f is a local function with supp(f) ⊂ Λ, resp. supp(f) ⊂ VN , then

〈f〉−Λ;β,h ≤ 〈f〉∅Λ;β,h ≤ 〈f〉+Λ;β,h,

〈f〉−VN−1;β,h
≤ 〈f〉perVN ;β,h ≤ 〈f〉+VN ;β,h.
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Proof. Let I(ω) = exp{β
∑

i∈Λ,j /∈Λ

i∼j
ωi(1− ηj)}. First, observe that

∑
ω∈Ω+

Λ

e−HΛ;β,h(ω) =
∑
ω∈Ωη

Λ

e−HΛ;β,h(ω)I(ω),

and for nondecreasing function f ,∑
ω∈Ω+

Λ

e−HΛ;β,h(ω)f(ω) ≥
∑
ω∈Ωη

Λ

e−HΛ;β,h(ω)I(ω)f(ω).

This implies that

〈f〉+Λ;β,h =

∑
ω∈Ω+

Λ
e−HΛ;β,h(ω)f(ω)∑

ω∈Ω+
Λ
e−HΛ;β,h(ω)

≥
∑

ω∈Ωη
Λ
e−HΛ;β,h(ω)f(ω)I(ω)∑

ω∈Ωη
Λ
e−HΛ;β,h(ω)I(ω)

=
〈If〉ηΛ;β,h

〈I〉ηΛ;β,h

≥ 〈f〉ηΛ;β,h.

The proof for the free boundary condition is identical, using I(ω) = exp{β
∑

i∈Λ,j /∈Λ

i∼j
ωi}.

For the periodic condtion, we have

µper
VN ;β,h(ω |VN

| σi = 1∀i ∈ ΣN ) = µ+
VN−1;β,h

(ω),

where ΣN := {i = (i1, · · · , id) ∈ VN : ∃1 ≤ k ≤ d s.t. ik = 0} and ω |S := (ωi)i∈S .

Proof of Theorem 5. Let f be a local function. We have proved

〈f〉+Λn;β,h
=

∑
A⊂supp(f)

f̃A〈nA〉+Λn;β,h .

Since the functions nA are nondecreasing, Lemma 1 implies that

〈nA〉+Λn;β,h
≥ 〈nA〉+Λn+1;β,h

.

By nonnegative, 〈nA〉+Λn;β,h
converges as n→ ∞. It follows that 〈f〉+Λn;β,h

also has a limit 〈f〉+β,h.
Analogously to the subsequence selection argument in real analysis, we can easily conclude that the

limit does not depend on the choice of Λn, and the translation invariance is also trivial.
With similar arguments, one can also construct Gibbs states using the free boundary condition.
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2 Phase Diagram
In previous sections, we have seen that infinite-volume Gibbs states can be constructed via various
boundary conditions, such as + or − boundaries. The natural next question is whether these Gibbs
states are identical, or if the influence of the boundary condition persists in the thermodynamic limit.
This is fundamentally a question of uniqueness of Gibbs states.

If the limiting Gibbs state does depend on the boundary condition, then multiple distinct Gibbs states
exist for the same parameters (β, h), indicating a phase transition. Rather than being a flaw, this lack
of uniqueness is a central feature of statistical mechanics. It implies that even with full microscopic
knowledge (the Hamiltonian and spin configurations), one cannot completely determine the macroscopic
behavior of the system solely from the parameters β and h.

The main goal of this section is to characterize, for each pair (β, h), whether the Gibbs state is unique
or not—thus establishing the phase diagram of the Ising model.

Definition 1. If at least two distinct Gibbs states can be constructed for a pair (β, h), we say that there
is a first-order phase transition at (β, h).

We gather the corresponding claims in the form of a theorem.

Theorem 6. 1. In any d ≥ 1, when h 6= 0, there is a unique Gibbs state for all values of β ∈ R≥0.

2. In d = 1, there is a unique Gibbs state at each (β, h) ∈ R≥0 × R.

3. When h = 0 and d ≥ 2, there exists βc = βc(d) ∈ (0,∞) such that:

• when β < βc, the Gibbs state at (β, 0) is unique,
• when β > βc, a first-order phase transition occurs at (β, 0):

〈·〉+β,0 6= 〈·〉−β,0.

Figure 1: The phase diagram of the Ising model in d ≥ 2.

2.1 Two Criteria for (Non)-uniqueness
In this subsection, we establish a link between uniqueness of the Gibbs state, the average magnetization
density and differentiability of the pressure. We use these quantities to formulate several equivalent
characterizations of uniqueness of the Gibbs state, which play a crucial role in our determination of the
phase diagram.

2.1.1 A First Characterization of Uniqueness

The major role played by the states 〈·〉+β,h and 〈·〉−β,h is made clear by the following result.

Theorem 7. Let (β, h) ∈ R≥0 × R. The following statements are equivalent:

1. There is a unique state at (β, h).

2. 〈·〉+β,h = 〈·〉−β,h.
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3. 〈σ0〉+β,h = 〈σ0〉−β,h.

Proof. 1 ⇒ 2 ⇒ 3: Trivial.
3 ⇒ 2: By lineiarity, it suffices to prove 〈nA〉+β,h = 〈nA〉−β,h, ∀A ⋐ Zd. Since

∑
i∈A ni − nA is

nondecreasing, for all k, ⟨∑
i∈A

ni − nA

⟩−

Λk;β,h

≤

⟨∑
i∈A

ni − nA

⟩+

Λk;β,h

.

Using lineiarity and translation invariance, letting k → ∞and rearranging, we have

0 ≤ 〈nA〉+β,h − 〈nA〉+β,h ≤
∑
i∈A

(〈ni〉+β,h − 〈ni〉−β,h) =
1

2

∑
i∈A

(〈σi〉+β,h − 〈σi〉−β,h) = 0,

and hence 〈nA〉+β,h = 〈nA〉+β,h.
2 ⇒ 1: Applying Lemma 2 and the squeeze theorem yields

〈nA〉+β,h = 〈nA〉β,h = 〈nA〉+β,h.

2.1.2 Some Properties of the Magnetization Density

It is natural to wonder whether the quantities of 〈σ0〉#β,h are related to the average magnetization density
m#

Λ (β, h) := 〈mΛ〉#β,h. The following result shows that they in fact coincide in the thermodynamic limit.

Proposition 2. For any sequence Λ ⇑ Zd, the limits

m+(β, h) := lim
Λ⇑Zd

m+
Λ (β, h), m−(β, h) := lim

Λ⇑Zd
m−

Λ (β, h)

exist and
m+(β, h) = 〈σ0〉+β,h m−(β, h) = 〈σ0〉−β,h.

Moreover, h 7→ m+(β, h) is right-continuous, while h 7→ m−(β, h) is left-continuous.

Proof. By translation invariance and monotonicity,

〈σ0〉+β,h = 〈mΛn〉+β,h ≤ 〈mΛn〉+Λn;β,h
.

For the other bound, fix k ≥ 1 and let i ∈ Λn. On the one hand, if i+ B(k) ⊂ Λn,

〈σi〉+Λn;β,h
≤ 〈σi〉+i+B(k);β,h = 〈σ0〉+B(k);β,h.

On the other hand, if i+ B(k) 6⊂ Λn, then the box i+Bk intersects ∂inΛn. So

〈mΛn
〉+Λn;β,h

=
1

|Λn|
∑
i∈Λn:

i+B(k)⊂Λn

〈σi〉+Λn;β,h
+

1

|Λn|
∑
i∈Λn:

i+B(k) ̸⊂Λn

〈σi〉+Λn;β,h

≤ 〈σ0〉+B(k);β,h +
|B(k)||∂inΛn|

|Λn|
.

This implies that, for all k ∈ Z>0,

lim sup
n

〈mΛn〉+Λn;β,h
≤ 〈σ0〉+B(k);β,h

k→∞−−−−→ 〈σ0〉+β,h.

Now we obtain
lim sup

n
〈mΛn

〉+Λn;β,h
≤ 〈σ0〉+β,h ≤ lim inf

n
〈mΛn

〉+Λn;β,h
,

It follows that m+(β, h) exists and
m+(β, h) = 〈σ0〉+β,h.
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To see the one-sided continuity, we should use the FKG inequality. Fix Λ ⋐ Zd.

∂

∂h
〈σ0〉+Λ;β,h =

∂

∂h

∑
ω σ0(ω) exp[β

∑
i∼j σiσj + h

∑
i σi]∑

ω exp[β
∑

i∼j σiσj + h
∑

i σi]

=
∑
i

(〈σ0σi〉+β,h − 〈σ0〉+β,h〈σi〉
+
β,h) ≥ 0,

so h 7→ 〈σ0〉+Λ;β,h is nondecreasing. Letting Λ ↑ Zd, h 7→ 〈σ0〉+β,h is nondecreasing. Now let hm ↓ h and
Λn ↑ Zd. So the double sequence (〈σ0〉+Λn;β,h

)m,n≥1 is nonincreasing and bounded.

lim
m→∞

〈σ0〉+β,hm
= lim

m→∞
lim

n→∞
〈σ0〉+Λn;β,hm

= lim
n→∞

lim
m→∞

〈σ0〉+Λn;β,hm
= lim

n→∞
〈σ0〉+Λn;β,h

= 〈σ0〉+β,h.

Similarly, we can prove h 7→ m−(β, h) is left-continuous.

Remark 2. For all h ≥ 0, β 7→ 〈σ0〉+β,h is nondecreasing.

The proof of Remark 2 is left as an exercise.

2.1.3 Defining the Critical Inverse Temperature

Since 〈σ0〉−β,0 = −〈σ0〉+β,0 by symmetry, so when h = 0, uniqueness is equivalent to m∗(β) = 0. By
Remark 2, m∗(β) = 〈σ0〉+β,0 is monotone in β. And naturally, we are led to the following definition.

Definition 2. The critical inverse temperature is

βc(d) := inf{β ≥ 0 : m∗(β) > 0} = sup{β ≥ 0 : m∗(β) = 0}.

Remark 3. When m∗(β) > 0, 〈σ0σi〉+β,0 ≥ 〈σ0〉+β,0〈σi〉
+
β,0 = m∗(β)2 > 0.

In particular,
inf
i∈Zd

〈σ0σi〉+β,0 > 0, ∀β > βc.

Such a behavior is referred to as long-range order.

2.1.4 A Second Characterization of Uniqueness

The following theorem provides the promised link between the two notions of first order transition.

Theorem 8. For β ≥ 0 and h ∈ R, we have

∂ψ

∂h±
(β, h) = m±(β, h).

Proof. Fix β ≥ 0 and h ∈ R. Choose a decreasing sequence hk ↓ h such that the pressure ψ(β, ·) is
differentiable at every hk. Then

∂ψ

∂h+
(β, h) = lim

k→∞
m(β, hk) = lim

k→∞
m+(β, hk) = m+(β, h).

The identity for the left derivative follows in the same way by considering an increasing sequence hk ↑
h.

Now,
m+(β, h) = m−(β, h) ⇐⇒ 〈σ0〉+β,h = 〈σ0〉−β,h ⇐⇒ uniqueness at (β, h).
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