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This note draws upon Subsections 1, 2, and 6 of Section 3.10 from the book[1].

1 Kramers–Wannier duality
In the first part (based on Subsection 3.10.1[1]), we will present a proof showing that the critical inverse

temperature of the Ising model on Z2 is given by

βc(2) =
1

2
log(1 +

√
2). (3.63)

This proof is attributed to Kramers and Wannier [2].
To begin, we introduce the partition function with + boundary condition in terms of contours (for

detailed derivation, refer to Equation (3.32) in [1]):

Z+
B(n);β,0 = eβ|E

b
B(n)|

∑
ω∈Ω+

B(n)

∏
γ∈Γ(ω)

e−2β|γ|. (3.64)

Then, we define the box dual to B(n) as follows

B(n)∗ = {−n− 1

2
,−n+

1

2
, . . . , n− 1

2
, n+

1

2
}2 ⊂ Z2

∗,

as illustrated in the figure below.

Figure 1: B(n) and B(n)∗

Next, analogous to Equation (3.45) in [1], it can be derived that

Z∅B(n)∗;β∗,0 = cosh(β∗)|EB(n)∗ |
∑

E∈Eeven
B(n)∗

tanh(β∗)|E|
∑
ω∈ΩΛ

∏
{i,j}⊂E

ωiωj

= cosh(β∗)|EB(n)∗ |
∑

E∈Eeven
B(n)∗

tanh(β∗)|E|
∏
i∈E

∑
ω∈ΩΛ

ω
I(i,E)
i

= 2|B(n)∗| cosh(β∗)|EB(n)∗ |
∑

E∈Eeven
B(n)∗

tanh(β∗)|E|.

(3.65)
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where

I(i, E)
def
= #

{
j ∈ Zd : {i, j} ∈ E

}
, Eeven

B(n)∗
def
=
{
E ∈ EB(n)∗

∣∣ I(i, E) is even for all i ∈ Λ
}
.

As shown in Figure 1, we will identify each set E ∈ Eeven
B(n)∗ with the edges of the contours corresponding

to a unique configuration ω ∈ Ω+
B(n)

Lemma 1. Let E ∈ EB(n)∗ . Then E ∈ E
B(n)∗

even if and only if E coincides with the edges of the contours of
a configuration ω ∈ Ω

B(n)
+ .

Proof. If E ∈ E
B(n)∗

even , we can apply the deformation operation illustrated in Figure 2.

Figure 2: The deformation rule

This yields a set of disjoint closed loops, which correspond to the contours of the configuration ω ∈ Ω
B(n)
+

defined by:
ωi

def
= (−1)|{loops surrounding i}|, i ∈ B(n)

Conversely, as noted in [1] (page 111, paragraph 2), the edge set of the contours of any configuration
ω ∈ Ω

B(n)
+ belong to E

B(n)∗

even .

By virtue of the previous lemma, we establish a correspondence between these sets and the contours,
specifically: ∑

E∈EB(n)∗
even

tanh(β∗)|E| =
∑

ω∈ΩB(n)
+

∏
γ∈Γ(ω)

tanh(β∗)|γ|

Therefore, if β∗ satisfies:
tanh(β∗) = e−2β . (3.66)

Combine with
Z+
Λ;β,0 = eβ|E

b
Λ|
∑

ω∈ΩΛ
+

∏
γ∈Γ(ω)

e−2β|γ|, (3.32)

it follows that:
2−|B(n)∗| cosh(β∗)−|EB(n)∗ |Z∅B(n)∗;β∗,0 = e−β|E

B(n)
b |Z+

B(n);β,0 (3.67)

As n→∞:
|B(n)∗|
|B(n)|

→ 1,
|EB(n)∗ |
|B(n)|

→ 2,
|E B(n)

b |
|B(n)|

→ 2

Taking the logarithm of both sides of (3.67) and invoking the convergence of the pressure (for details,
see Theorem 3.6 in [1]), we therefore obtain:

ψ(β, 0) = ψ(β∗, 0)− log sinh(2β∗) (3.68)

To understand (3.68), recall that tanh(β∗) = e−2β . So the meaning of the (3.68) is that the pressure is
essentially invariant under the transformation:

β 7→ β∗ = artanh(e−2β) (3.69)

which interchanges the low and high temperatures, as can be verified in the following exercise.

Exercise 2. Show that the mapping ϕ : x 7→ artanh(e−2x) is an involution (ϕ ◦ϕ = id) with a unique fixed
(self-dual) point βsd equal to 1

2 log(1 +
√
2). Moreover, ϕ([0, βsd)) = (βsd,∞].
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Finally, to prove (3.63), we present the following observations.
Since ϕ and log sinh are both analytic on (0,∞), it follows from (3.68) that any non-analytic behavior

of ψ(·, 0) at a given inverse temperature β must necessarily imply non-analytic behavior at β∗ = ϕ(β).
Consequently, if we assume that the pressure ψ(·, 0)

1. is non-analytic at βc,

2. is analytic everywhere else,

then βc must satisfies ϕ ◦ ϕ(βc) = βc, so it coincides with βsd. This completes the proof of (3.63).

2 Mean-field bounds
In the second part (based on Subsection 3.10.2[1]), let ψCW

β (h), mCW
β (h) and βCW

c
def
= (2d)−1 represent

the pressure, magnetization and critical inverse temperature of the Curie–Weiss model associated to the
d-dimensional Ising model. The main theorem of this part, shows that these quantities provide rigorous
bounds on the corresponding quantities for the Ising model on Zd.

First, let us recall some basic definitions and properties of the Curie–Weiss model.

Definition 3. 1. For a set of spins ω = (ω1, . . . , ωN ) The Curie-Weiss Hamiltonian defined at inverse
temperature β and with an external magnetic field h, is given by

H CW
N ;β,h(ω)

def
= −dβ

N

N∑
i,j=1

ωiωj − h
N∑
i=1

ωi. (2.2)

2. We define ΩN
def
= {±1}Nas the set of all possible configurations of the Curie–Weiss model. The Gibbs

distribution over ΩN is expressed as:

µCW
N ;β,h(ω)

def
=

e−H CW
N;β,h(ω)

ZCW
N ;β,h

, where ZCW
N ;β,h

def
=

∑
ω∈ΩN

e−H CW
N;β,h(ω).

3. The free enregy of the Curie-Weiss model is defined by

fCW
β (m)

def
= −βdm2 +

1−m
2

log
1−m

2
+

1 +m

2
log

1 +m

2
. (2.5)

4. When h 6= 0, the supremum of hm − fCW
β (m) is attained at a unique point which we denote by

mCW
β (h). This point can be written as the modified mean-field equation:

tanh(2dβm+ h) = m. (2.15)

Theorem 4. 1. The pressure of the Curie-Weiss model

ψCW
β (h)

def
= lim

N→∞

1

N
logZCW

N ;β,h

exists and is convex in h. Moreover, it equals the Legendre transform of the free energy:

ψCW
β (h) = max

m∈[−1,1]

{
hm− fCW

β (m)
}
. (2.14)

2. By (2.14), the pressure can be written explicitly as

ψCW
β (h) = −dβ

(
mCW

β (h)
)2

+ log cosh
(
2dβ mCW

β (h) + h
)
+ log 2.

3.

Next, we present our principal theorem of this part, which is credited to Thompson [3][4].

Theorem 5. The following holds for the Ising model on Zd, d ≥ 1:

1. ψ(β, h) ≥ ψCW
β (h), for all β ≥ 0 and all h ∈ R;

2. 〈σ0〉+β,h ≤ mCW
β (h), for all β ≥ 0 and all h ≥ 0;

3



3. βc(d) ≥ βCW
c , for all d ≥ 1.

Proof. 1. Our fundamental approach is to identify a sequence of numbers that converges to ψ(β, h) and
demonstrate that each term in this sequence is no less than ψCW

β (h).
Given that the pressure functions are even with respect to h, we can assume without loss of generality
that h ≥ 0. We begin by decomposing the Hamiltonian with periodic boundary conditions:

H per
Vn;β,h

def
= −β

∑
{i,j}∈E per

per;Vn

σiσj − h
∑
i∈Vn

σi = H per,0
Vn;β,h

+ H per,1
Vn;β,h

,

where
H per,0

Vn;β,h
def
= dβ|Vn|m2 − (h+ 2dβm)

∑
i∈Vn

σi,

H per,1
Vn;β,h

def
= −β

∑
{i,j}∈E per

per;Vn

(σi −m)(σj −m),

and m ∈ R is a parameter to be determined later.
We can then express the corresponding partition function as

Zper
Vn;β,h

def
=

∑
ω∈ΩVn

exp
(
−H per

Vn;β,h
(ω)
)

=
∑

ω∈ΩVn

exp
(
−H per,1

Vn;β,h
(ω)
)
exp

(
−H per,0

Vn;β,h
(ω)
)

= Zper,0
Vn;β,h

〈
exp

(
−H per,1

Vn;β,h

)〉per,0

Vn;β,h
,

where we introduce the Gibbs distribution

µper,0
Vn;β,h

(ω)
def
=

exp
(
−H per,0

Vn;β,h
(ω)
)

Zper,0
Vn;β,h

, with Zper,0
Vn;β,h

def
=

∑
ω∈ΩVn

exp
(
−H per,0

Vn;β,h
(ω)
)
.

By the convexity of the exponential function and Jensen’s inequality,

Zper
Vn;β,h

≥ Zper,0
Vn;β,h

exp
(
−〈Hper,1;Vn;β,h〉

per,0
Vn;β,h

)
.

Notably, 〈
H per,1

Vn;β,h

〉per,0;

Vn;β,h
= −β

∑
{i,j}∈Eper;Vn

(
〈σi〉per,0

Vn;β,h
−m

)(
〈σj〉per,0

Vn;β,h
−m

)

= −βd|Vn|
(
m− 〈σ0〉per,0

Vn;β,h

)2
.

Since
〈σ0〉per,0;

Vn;β,h
= tanh(2dβm+ h),

choosing m to be the largest solution to

m = tanh(2dβm+ h)

(i.e. m = ψCW
β (h)) we get

〈
H per,1

Vn;β,h

〉per,0

Vn;β,h
= 0 and, therefore,

Zper
Vn;β,h

≥ Zper,0
Vn;β,h

= e−dβm
2|Vn|2|Vn| cosh(2dβm+ h)|Vn|.

Since 1
|Vn| logZ

per
Vn;β,h

converge to ψCW
β (h), the conclusion follows by Theorem (4).
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2. Let Λ = B(n), with n ≥ 1, and let i ∼ 0 denote any nearest-neighbor of the origin. Let 〈·〉+,1
Λ;β,h

Denote by 〈·〉+,1
Λ;β,h the expectation with respect to the Gibbs distribution in Λ with no interaction

between vertices 0 and i. Using the identity
eβσiσj = cosh(β) (1 + tanh(β)σiσj) , (3.41)

we derive the following upper bound for 〈σ0〉+Λ;β,h:

〈σ0〉+Λ;β,h =

∑
ω∈Ω+

Λ
ω0 exp

{
h
∑

j∈Λ σj + β
∑
{j,k}∈E Λ

b \{0,i}
ωjωk

}
(1 + ω0ωi tanhβ)∑

ω∈Ω+
Λ
exp

{
h
∑

j∈Λ σj + β
∑
{j,k}∈E Λ

b \{0,i}
ωjωk

}
(1 + ω0ωi tanhβ)

=
〈σ0〉+,1

Λ;β,h + 〈σi〉+,1
Λ;β,h tanhβ

1 + 〈σ0σi〉+,1
Λ;β,h tanhβ

≤
〈σ0〉+,1

Λ;β,h + 〈σi〉+,1
Λ;β,h tanhβ

1 + 〈σ0〉+,1
Λ;β,h 〈σi〉

+,1
Λ;β,h tanhβ

, (3.70)

where we used the GKS inequality in the last inequality.
Next, observe that for any x ≥ 0, a ∈ [0, 1], and b ∈ [−1, 1], the function

b+ a tanh(x)

1 + ba tanh(x)
≤ b+ tanh(ax)

1 + b tanh(ax)
. (3.71)

holds due to the concavity of tanh and the monotonicity of y 7→ b+y
1+by for y ≥ 0. Applying (3.71) to

(3.70) yields

〈σ0〉+Λ;β,h ≤
〈σ0〉+,1

Λ;β,h + tanh
(
β〈σi〉+,1

Λ;β,h

)
1 + 〈σ0〉+,1

Λ;β,h tanh
(
β〈σi〉+,1

Λ;β,h

) .
Using the identity

tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
= tanh(x+ y),

this simplifies to
〈σ0〉+Λ;β,h ≤ tanh

{
artanh

(
〈σ0〉+,1

Λ;β,h

)
+ β〈σi〉+,1

Λ;β,h

}
,

which can be rewritten as
artanh

(
〈σ0〉+Λ;β,h

)
≤ artanh

(
〈σ0〉+,1

Λ;β,h

)
+ β〈σi〉+,1

Λ;β,h.

Finally, by GKS inequalities,
〈σi〉+,1

Λ;β,h = 〈σieβσ0σi〉+Λ;β,h/〈e
βσ0σi〉+Λ;β,h ≤ 〈σi〉

+
Λ;β,h,

so that
artanh

(
〈σ0〉+Λ;β,h

)
≤ artanh

(
〈σ0〉+,1

Λ;β,h

)
+ β〈σi〉+Λ;β,h. (3.72)

Iterating (3.72) over all nearest-neighbors i ∼ 0 successively, we derive

artanh
(
〈σ0〉+Λ;β,h

)
≤ artanh

(
〈σ0〉∅{0};β,h

)
+ β

∑
i∼0
〈σi〉+Λ;β,h.

Of course, 〈σ0〉∅{0};β,h = tanh(h). Therefore,

artanh
(
〈σ0〉+Λ;β,h

)
≤ h+ β

∑
i∼0
〈σi〉+Λ;β,h,

that is,

〈σ0〉+Λ;β,h ≤ tanh

(
h+ β

∑
i∼0
〈σi〉+Λ;β,h

)
.

Taking the thermodynamic limit Λ ↑ Zd and using translation invariance 〈σi〉+β,h = 〈σ0〉+β,h, we obtain

〈σ0〉+β,h ≤ tanh
(
h+ 2dβ〈σ0〉+β,h

)
.

From this we conclude 〈σ0〉+β,h ≤ mCW
β (h).

3. When β < βCW
c , the previous result implies 〈σ0〉+β,0 ≤ mCW

β (0) = 0. Since 〈σ0〉+β,0 ≥ 0, this forces
〈σ0〉+β,0 = 0, proving β < βc(d).

As shown, Theorem (5) provides explicit bounds on the Ising model quantities on Zd (d ≥ 1) by
leveraging the exact solutions of the Curie-Weiss model.
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3 Random-cluster and random-current representations
In the third and final part (drawing on Subsection 3.10.6 of [1]), we will present a geometric approach

to the Ising model. In the previous seminar, we covered the low-temperature and high-temperature rep-
resentations during our analysis of the phase diagram. In this part, we will briefly introduce two other
graphical representations of the Ising model: the random-cluster representation and the random-current
representation.

3.1 Random-cluster representation
We begin with the random-cluster representation. Its starting point is analogous to the derivation

of the model’s high-temperature representation: we expand the Boltzmann weight in a suitable manner.
Here, we express

eβσiσj = e−β +
(
eβ − e−β

)
1{σi=σj} = eβ

(
(1− pβ) + pβ1{σi=σj}

)
,

where we define
pβ

def
= 1− e−2β ∈ [0, 1].

Let Λ ⋐ Zd. Using the above notation, after expanding the product, we obtain∏
{i,j}∈E b

Λ

eβσiσj = eβ|E
b
Λ|
∑

E⊂E b
Λ

p
|E|
β (1− pβ)|E

b
Λ\E|

∏
{i,j}∈E

1{σi=σj}.

The partition function Z+
Λ;β,0 can thus be written as

Z+
Λ;β,0 = eβ|E

b
Λ|
∑

E⊂E b
Λ

p
|E|
β (1− pβ)|E

b
Λ\E|

∑
ω∈Ω+

Λ

∏
{i,j}∈E

1{σi(ω)=σj(ω)}

= eβ|E
b
Λ|
∑

E⊂E b
Λ

p
|E|
β (1− pβ)|E

b
Λ\E|2N

w
Λ (E)−1,

where Nw
Λ (E) denotes the number of connected components (usually referred to as clusters in this context)

of the graph (Zd, E ∪ EZd\Λ). This graph is constructed by considering all vertices of Zd and all edges of
Zd that either belong to E or do not intersect the box Λ.

The FK-percolation process in Λ with wired boundary condition is a probability distribution on P(E b
Λ)

—the set of all subsets of E b
Λ. For a subset of edges E ⊂ E b

Λ, the probability assigned by this distribution
is

νFK,w
Λ;pβ ,2

(E)
def
=

p
|E|
β (1− pβ)|E

b
Λ\E|2N

w
Λ (E)∑

E′⊂E b
Λ
p
|E′|
β (1− pβ)|E

b
Λ\E′|2N

w
Λ (E′)

.

For A,B ⊂ Zd, let us write {A↔ B} for the event that there exists a cluster intersecting both A and
B.

Exercise 6. Proceeding as above, check the following identities: for any i, j ∈ Λ ⋐ Zd,

〈σi〉+Λ;β,0 = νFK,w
Λ;pβ ,2

(i↔ ∂exΛ), 〈σiσj〉+Λ;β,0 = νFK,w
Λ;pβ ,2

(i↔ j).

Proof. 1. Proof of 〈σi〉+Λ;β,0 = νFK,w
Λ;pβ ,2

(i↔ ∂exΛ)

By definition of the expectation in the Ising model:

〈σi〉+Λ;β,0 =
1

Z+
Λ;β,0

∑
ω∈Ω+

Λ

σi(ω) exp

β ∑
{j,k}∈E b

Λ

σj(ω)σk(ω)

 .

Using the random-cluster expansion of the Boltzmann weight:

exp

β ∑
{j,k}∈E b

Λ

σjσk

 = eβ|E
b
Λ|
∑

E⊂E b
Λ

p
|E|
β (1− pβ)|E

b
Λ\E|

∏
{j,k}∈E

1{σj=σk},
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substituting into the expectation gives:

〈σi〉+Λ;β,0 =
eβ|E

b
Λ|

Z+
Λ;β,0

∑
E⊂E b

Λ

p
|E|
β (1− pβ)|E

b
Λ\E|

∑
ω∈Ω+

Λ

σi(ω)
∏

{j,k}∈E

1{σj(ω)=σk(ω)}.

For the inner sum over spins: - If i is connected to ∂exΛ in E ∪ EZd\Λ, all spins in the cluster are +1
(due to + boundary conditions), so σi = 1. - Otherwise, the cluster containing i is isolated, and the
sum over σi gives

∑
σi=±1 σi = 0.

Thus: ∑
ω∈Ω+

Λ

σi(ω)
∏

{j,k}∈E

1{σj=σk} = 2N
w
Λ (E)−11{i↔∂exΛ}.

Using the partition function Z+
Λ;β,0 = eβ|E

b
Λ|
∑

E p
|E|
β (1− pβ)|E

b
Λ\E|2N

w
Λ (E)−1, we simplify:

〈σi〉+Λ;β,0 =

∑
E:i↔∂exΛ p

|E|
β (1− pβ)|E

b
Λ\E|2N

w
Λ (E)∑

E p
|E|
β (1− pβ)|E

b
Λ\E|2N

w
Λ (E)

= νFK,w
Λ;pβ ,2

(i↔ ∂exΛ).

2. Proof of 〈σiσj〉+Λ;β,0 = νFK,w
Λ;pβ ,2

(i↔ j)

The proof follows a similar line of reasoning to the previous one and thus is omitted here.

One feature that renders the random - cluster representation especially useful (enabling the successful
import of numerous ideas and techniques developed for Bernoulli bond percolation) is the existence of an
FKG inequality. Let Λ ⋐ Zd and consider the partial order on P(Eb,Λ) given by E ≤ E′ if and only if
E ⊂ E′.

From the previous exercise (6) and the Riesz–Markov–Kakutani representation theorem, one can define
a probability measure νFK,w

pβ ,2
on E such that

νFK,w
pβ ,2

(A ) = lim
Λ↑Zd

νFK,w
Λ;pβ ,2

(A ),

for all local events.
A simple yet remarkable observation is that the statements of Exercise (6) remain valid under this

measure. In particular,
〈σ0〉+β,0 = νFK,w

pβ ,2
(0↔∞),

where {0↔∞} corresponds to the event that there exists an infinite path of disjoint open edges starting
from 0 (or, equivalently, that the cluster containing 0 has infinite cardinality).

Since Theorem 3.28 of [1] shows that the existence of a first-order phase transition at inverse tempera-
ture (and magnetic field) is equivalent to non-zero spontaneous magnetization, the above relation implies
that the latter is also equivalent to percolation in the associated FK-percolation process.

3.2 Random-current representation
Next, we introduce the random-current representation. Like before, we expand the Boltzmann weight,

then the product over pairs of neighbors, and finally sum over the spins. For the first step, expand the
exponential as a Taylor series:

eβσiσj =

∞∑
n=0

βn

n!
(σiσj)

n.

Writing n = (ne)e∈Eb
Λ

for a collection of nonnegative integers, we get

∏
{i,j}∈E b

Λ

eβσiσj =
∑
n

∏
e∈Eb

Λ

βne

ne!

 ∏
{i,j}∈Eb

Λ

(σiσj)
ni,j .
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The partition function Z+
Λ;β,0 becomes

Z+
Λ;β,0 =

∑
n

 ∏
e∈E b

Λ

βne

ne!

 ∑
ω∈Ω+

Λ

∏
{i,j}∈Eb

Λ

(σi(ω)σj(ω))
ni,j

=
∑
n

 ∏
e∈E b

Λ

βne

ne!

∏
i∈Λ

∑
ωi=±1

ω
Î(i,n)
i ,

where Î(i,n) def
=
∑

j:j∼i ni,j . Since

∑
ωi=±1

ωm
i =

{
2 if m is even,
0 if m is odd,

we conclude
Z+
Λ;β,0 = 2|Λ|

∑
n:∂Λn=∅

∏
e∈E b

Λ

βne

ne!
= 2|Λ|eβ|E

b
Λ |P+

Λ;β(∂Λn = ∅),

where ∂Λn
def
= {i ∈ Λ : Î(i,n) is odd}. Under the probability distribution P+

Λ;β , n = (ne)e∈E b
Λ

is a collection
of independent random variables, each one distributed according to the Poisson distribution of parameter
β. We will call n a current configuration in Λ.

Similar representations hold for arbitrary correlation functions.

Exercise 7. Derive the following identity: for all A ⊂ Λ ⋐ Zd,

〈σA〉+Λ;β,0 =
P+
Λ;β(∂Λn = A)

P+
Λ;β(∂Λn = ∅)

.

The power of the random - current representation, however, lies in the fact that it also allows a
probabilistic interpretation of truncated correlations in terms of various geometric events. The crucial
result is the following lemma, which deals with a distribution on pairs of current configurations

P+(2)
Λ;β (n1,n2)

def
= P+

Λ;β(n
1)P+

Λ;β(n
2).

Let us denote by i n←→ ∂exΛ the event that there is a path connecting i to ∂exΛ along which n takes
only positive values.

Lemma 8 (Switching Lemma). Let Λ ⋐ Zd, A ⊂ Λ, i ∈ Λ and I a set of current configurations in Λ.
Then,

P+(2)
Λ;β (∂Λn

1 = A, ∂Λn
2 = {i},n1 + n2 ∈ I )

= P+(2)
Λ;β (∂Λn

1 = A4{i}, ∂Λn2 = ∅,n1 + n2 ∈ I , i
n1+n2

←→ ∂exΛ). (3.78)

Proof. Define
w(n)

def
=
∏
e∈E b

Λ

βne

ne!

and, for two current configurations satisfying n ≤m (that is, ne ≤ me, ∀e ∈ E b
Λ ),(

m

n

)
def
=
∏
e∈E b

Λ

(
me

ne

)
.

Change variables from the pair (n1,n2) to the pair (m,n) where m = n1 + n2 and n = n2. Since
∂Λ(n

1 + n2) = ∂Λn
14∂Λn2, n ≤m and

w(n1)w(n2) =

(
n1 + n2

n2

)
w(n1 + n2) =

(
m

n

)
w(m),
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we can rewrite ∑
∂Λn1=A
∂Λn2={i}
n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=A△{i}
m∈I

w(m)
∑
n≤m

∂Λn={i}

(
m

n

)
. (3.79)

Note that i m←→ ∂exΛ =⇒ i
n←→ ∂exΛ, since n ≤m. Consequently,∑
n≤m

∂Λn={i}

(
m

n

)
= 0, when i

m←→ ∂exΛ, (3.80)

since i n←→ ∂exΛ whenever ∂Λn = {i}. Let us therefore assume that i m←→ ∂exΛ, which allows us to use
the following lemma, which will be proven below.

Lemma 9. Let m be a current configuration in Λ ⋐ Zd and C,D ⊂ Λ. If there exists a current configuration
k such that k ≤m and ∂Λk = C, then∑

n≤m
∂Λn=D

(
m

n

)
=

∑
n≤m

∂Λn=C△D

(
m

n

)
. (3.81)

An application of this lemma with C = D = {i} yields∑
n≤m

∂Λn={i}

(
m

n

)
=

∑
n≤m

∂Λn=∅

(
m

n

)
, when i

m←→ ∂exΛ. (3.82)

Using (3.80) and (3.82) in (3.79), and returning to the variables n1 = m− n and n2 = n, we get∑
∂Λn1=A
∂Λn2={i}
n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=A△{i}
m∈I

i
m←→∂exΛ

w(m)
∑
n≤m

∂Λn=∅

(
m

n

)

=
∑

∂Λn1=A△{i}
∂Λn2=∅
n1+n2∈I

w(n1)w(n2)1
{in

1+n2
←→ ∂exΛ}

,

and the proof is complete. □

Proof of Lemma (9). Let us associate to the configuration m the graph Gm with vertices Λ ∪ ∂exΛ and
with me edges between the endpoints of each edge e ∈ E b

Λ . By assumption, Gm possesses a subgraph Gk

with ∂ΛGk = C, where ∂ΛGk is the set of vertices of Λ belonging to an odd number of edges.
The left - hand side of (3.81) is equal to the number of subgraphs G of Gm satisfying ∂ΛG = D, while

the right - hand side counts the number of subgraphs G of Gm satisfying ∂ΛG = C4D. But the application
G 7→ G4Gk defines a bijection between these two families of graphs, since ∂Λ(G4Gk) = ∂ΛG4∂ΛGk and
(G4Gk)4Gk = G.

As one simple application of the Switching Lemma, let us derive a probabilistic representation for the
truncated 2 - point function.
Lemma 10. For all distinct i, j ∈ Λ ⋐ Zd,

〈σiσj〉+Λ;β,0 =
P+(2)
Λ;β (∂Λn

1 = {i, j}, ∂Λn2 = ∅, i n1+n2

←→ ∂exΛ)

P+(2)
Λ;β (∂Λn1 = ∅, ∂Λn2 = ∅)

. (3.83)

Proof. Using the representation of Exercise 7,

〈σiσj〉+Λ;β,0 =
P+
Λ;β(∂Λn = {i, j})
P+
Λ;β(∂Λn = ∅)

−
P+
Λ;β(∂Λn = {i})
P+
Λ;β(∂Λn = ∅)

·
P+
Λ;β(∂Λn = {j})
P+
Λ;β(∂Λn = ∅)

=
P+(2)
Λ;β (∂Λn

1 = {i, j}, ∂Λn2 = ∅)− P+(2)
Λ;β (∂Λn

1 = {i}, ∂Λn2 = {j})

P+(2)
Λ;β (∂Λn1 = ∅, ∂Λn2 = ∅)

.

Since the Switching Lemma(8) implies that

P+(2)
Λ;β (∂Λn

1 = {i}, ∂Λn2 = {j}) = P+(2)
Λ;β (∂Λn

1 = {i, j}, ∂Λn2 = ∅, i n1+n2

←→ ∂exΛ),

we can cancel terms in the numerator and the conclusion follows.
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